
Towards a Scalable and Unified REST API for Cloud Data

Stores

Felix Gessert, Steffen Friedrich, Wolfram Wingerath,

Michael Schaarschmidt, Norbert Ritter

Database and Information Systems Group

University of Hamburg

{gessert, friedrich, wingerath, xschaars, ritter}@informatik.uni-hamburg.de

Abstract: In the last years, many database-as-a-service (DBaaS) systems have started
to offer their functionalities through REST APIs. Examples are record stores like
DynamoDB and Azure Tables, object stores such as Amazon S3 as well as many
NoSQL database systems, for instance Riak, CouchDB and ElasticSearch. Yet today,
there has been no systematic effort on deriving a unified REST interface which takes
into account the different data models, schemas, consistency concepts, transactions,
access-control mechanisms and query languages to expose cloud data stores through
a common interface without restricting their functionality. This work motivates the
design of such a REST API as well as the challenges of providing it in an extensible,
scalable and highly-available fashion. To this end, we propose the REST middleware
ORESTES that consists of an independently scalable tier of HTTP servers that map the
unified REST API to aggregate-oriented (NoSQL) data stores. It extracts a wide range
of DBaaS concerns (e.g. schema management and access control) and provides them
in a modular, database-independent fashion at the middleware-level. To tackle the la-
tency problem of cloud-based web applications we introduce the Bloom filter-bounded
staleness cache consistency algorithm. It leverages the global web caching infrastruc-
ture for geo-replication to allow consistent low latency reads. We furthermore show
the first steps towards a Polyglot Persistence Mediator that exploits the decoupling of
the REST API from the data store to route data and operations based on SLAs.

1 Introduction

The success of the database-as-a-service model has brought a wide variety of commercial

and research systems. Though many have been extensively studied, there is a lack of tax-

onomy. Throughout this work, we will distinguish between managed database services,

proprietary database services and Backend-as-a-Service (BaaS). In a managed database

service a DBaaS provider offers a cloud-deployed DBMS and automates operational tasks

such as provisioning, multi-tenancy, backups, security, access control, elasticity, scaling,

performance tuning, failover and replication [CJP+11]. Proprietary database services

build on newly designed database systems (e.g. Google DataStore based on Megastore

[SVS+13]) or integrate different databases to a polyglot persistence environment to of-

fer them through provider-specific protocols and APIs. The Backend-as-a-Service model

enhances the DBaaS model by adding abstractions for backend concerns of mobile appli-

723

cations and web sites (e.g. authentication, push notifications, data validation and assets).

DBaaS systems differ in the degree to which they provide automation of operational tasks,

the underlying data store, pricing models, service level agreements (SLAs), multi-tenancy

strategies and, most importantly, their interfaces. While Proprietary database services offer

provider-specific interfaces, managed database services offer database-specific protocols

that were not designed for cloud environments. In this paper, we will focus on aggregate-

oriented NoSQL services. As described by Fowler et al. [SF12] this encompasses NoSQL

databases that have a (potentially denormalized) aggregate as their primary unit of access:

rows in wide-column and record stores, documents in document stores and key-value pairs

in key-value stores. This aligns well with the resource-oriented model of REST. The key

observation and motivation for this work is that aggregate-oriented DBaaS systems can be

greatly enhanced by providing them through a single unified and scalable REST API. This

is attractive as clients can be reused, data models be shared and applications be migrated.

The contributions of this paper are threefold:

1. Unified REST API. We propose a Database- and Backend-as-a-Service REST API

(see Figure 1) that captures functional concepts (transactions, queries, commutative

updates, etc.) across a wide range of systems.

2. Modular Middleware. We introduce the modular ORESTES middleware approach,

where backend dabatase systems can be exposed through the unified REST API

by plugging them into reusable modules (e.g. for partial updates). This yields an

architecture where core concepts like authentication and schema management only

need to be implemented once and then can be reused for many database systems.

3. Low latency through consistent web caching. As achieving low latency is cru-

cial for any user-facing application, we propose the Bloomfilter-bounded staleness

algorithm to drastically reduce latency through web caching.

The paper is structured as follows. Section 2 outlines the requirements and overall concept

before presenting the proposed architecture. In Section 3 an evaluation is given, followed

by a discussion of networking aspects relevant for the applicability of REST in the cloud

database setting. Section 4 overviews related work and section 5 presents conclusions.

Authentication
Authorisation
Data Validation
Stored Procedures

Dcemgpf/cu/c/Ugtxkeg

Fcvcdcug/cu/c/Ugtxkeg

Store Data
Query Data
Transactions Ex

po
se

d
RE

ST
 A

PI

Data
StoreSchema Management

SLA Management

Stateless
REST server

Stateless
REST server

Stateless
REST server

Standard Schemas
Push Updates
Static Content

Figure 1: Vision: a scalable REST tier for unmodified, aggregate-oriented data stores.

724

2 Concept and REST middleware architecture

To expose existing data stores as a Backend/Database-as-a-service without prior modifi-

cation, the ORESTES middleware and its unified REST API have to be powerful enough

to expose all possible capabilities of the underlying database (e.g. conditional updates)

without compromising its nonfunctional properties (e.g. scalability of data volume or lin-

earizable consistency). We distinguish between two types of modules in the middleware.

Data Modules express the mapping of data operations in the REST API to the underly-

ing database (CRUD operations, queries, indexing, system configuration). Data Modules

have to be implemented for each database that is to be exposed through the unified REST

API. Default Modules on the other hand implement abstractions that can be provided by

default on top of databases through data modules and middleware services (authentication,

authorization, data validation, stored procedures, push notifications, transactions, schema

management, SLA management, elastic scaling). Default modules can be overwritten to

leverage existing native capabilities (e.g. table-level ACLs for authorization).

Today, web performance is governed almost completely by latency [Gri13]. Numerous

studies by Amazon, AOL, Google, Bing, Akamai and others demonstrated the severe im-

plications of latency1. For this reason, web sites are increasingly built as Single-Page Ap-

plications (SPAs) to eliminate the overhead of server-side page generation, client redraws

and asset refetching. However, data requests remain extremely latency-critical. We solve

the latency problem through web caching of database objects. This is a novel approach,

as the web caching model is based on a-priori cache expiration times which necessitates

a cache coherence mechanism. In this work we propose a dual strategy: cache invalida-

tions perform asynchronous purging of server-controlled web caches (reverse-proxies and

CDN nodes) and Bloomfilter-bounded Staleness ships probabilistic summaries of recently

changed objects to clients that can then revalidate (bypass) stale cached copies (in client

caches, forward proxies and ISP caches).

Architecture. Figure 2 shows the ORESTES middleware architecture. Clients that can

either be pure DBaaS clients (application servers) or BaaS clients (browsers and mobile

devices) use the unified REST API supported by persistence APIs (JDO/Java and JSPA/-

JavaScript). At the server-side, HTTP servers wrap a (potentially distributed) data store

which currently can be VOD, db4o (OODBMSs), Redis (in-memory key-value store) or

MongoDB (document store). Through the stateless design of the servers, latency and

throughput is only bounded by the saturated database system as the middleware can scale

horizontally. Objects delivered over REST/HTTP are transparently cached for a fixed du-

ration. To allow server-side stored procedures and data validation through before and

after triggers, every server runs a Node.js process which executes registered client code

written in the same JSPA browsers run. This server-side code execution is essential for

BaaS when business logic should not be exposed and validation of user input is needed.

REST API. The unified REST API is composed of different modules, as shown in Fig-

ure 3a. It is specified through a new REST specification format similar to routing lan-

1Amazon found that with every 100ms of additional page load time, revenue decreases by 1%. AOL discov-

ered that all users in the 10%-quantile of fastest users visit 7.5 pages, slower users only 5. When increasing load

time of search results at Google by 500ms, traffic decreases by 20%. See: http://velocityconf.com/velocity2009

725

Java/JDO

persist

find

createQuery

ISP

JavaScript/JPA Port

REST/HTTP API

GET /db/{bucket}/{class}/{id}

Forward-Proxy Caches

ISP Caches

Reverse-Proxy Caches and
Load Balancers

HTTP Server

Redis (Replicated)

10201040

10101010

Trans-
actions

Que-
ries

Object
Persist. Schema Object

ACLs
Index-

ing

DBaaS & BaaS Layer

200 OK

Cache-Control: public, max-age=6000

ETag: "3"

JSON OďũĞĐƚ

CDN Caches

Transaction Validation
Counting
Bloom Filter

HTTP Server

Config-
uration

Partial
Updates

othersothers

Application
Server

Browser or
Mobile Device

add
delete

Access Control

Multi-Tenancy Schema Management

Workload Management

Cache Coherence

Autoscaling Node.JS (local to Server)
Stored Procedures
Custom Validation

Application

Layer

Persistence

API

Content Delivery

Networks

Database-

independent

Concerns

Database -

specific

Wrappers

Data

Store

SLAs

HTTP Server

Purge
Scale

Figure 2: ORESTES middleware architecture with an exemplary object request.

guages in MVC web frameworks (e.g. Play) but enhanced to also capture descriptions

and types of parameters and return values. It describes the effects of HTTP methods on

resources identified by URI patterns. The REST specification is loaded by the ORESTES

HTTP servers for validation, conversion (e.g. from JSON to a schema object) and to

generate an interactive REST API documentation on the server’s dashboard. The oper-

ations declared in the REST specification correspond with one or more methods in the

data and default modules that in turn communicate with the underlying database via its

specific drivers and protocols. For an end-to-end example, consider a web application

in which a user loads his profile. The call is done through the JavaScript JSPA per-

sistence API: entityManager.find(id). It employs the unified REST API: GET

726

db/profiles/id. Suppose the ORESTES middleware wraps a MongoDB cluster. Af-

ter parsing and checking the request, the server will call the CRUD data module’s load

method for MongoDB. The data module will issue a db.find() query to MongoDB

that returns the document. Based on the schema defined for Profile, the server returns

the requested object. The fully-typed profile object returned by JSPA can afterwards be

displayed, for instance by feeding it into a template of an SPA framework like Angular.js

or Backbone. Figure 3b provides examples of other REST API methods.

Dashboard and Unified

REST API

Get object

Returns the specified object...

@bucket : String The bucket

name

@oid : String The unique object

identifier

GET /db/:bucket/:oid

info.orestes.server.resource.db

.DbBucketOid : OrestesObject

...

CRUD.rest Orestes-Server

query

schema

transaction

transaction-crud

transaction-query

configuration

partial-update

registration-login

t

t

t

c

p

r

Unified REST API

Specification

public OrestesObject

load(ObjectInfo objInfo)

H
T

T
P

Data, Default and Core

Modules

Data Module for

specific DB

db/bucket/oid Resource

(a) REST specification lanaguage and its interpretation.

RRequest RResponse EExplanation
POST /db/:bucket

JSON-Object

Created object including assigned

object id (oid) and version number

Creates a new object.

PUT /db/:bucket/:oid

JSON-Object

Created/replaced object Replaces or creates an object using an object id. The

request can be conditioned on a version.

GET /db/:bucket/:oid Database object Fetches or revalidates an object. Request can be

answered by web caches.

GET /db/:bucket?query

&start=0&count=-1

List of matching ids Executes a DB-specific ad-hoc query.

GET /db/all_schemas All schemas for all classes Retrieves all schemas.

POST /transaction ID and URL of the transaction Starts a new transaction.

POST /db/:bucket/:oid/:field Success or validation failure Performs a partial update (e.g. counter increase).

(b) Example requests from different modules.

Figure 3: Composition of the unified REST API through modules.

Schema Management. ORESTES employs explicit object-oriented schemas as a default

module. Schema-free databases (Redis, MongoDB) thus get “bolt-on” rich schemas,

whereas schema-aware databases (db4o, Versant) can expose their own schemas. We

think that explicit schemas are an advantage as they allow type-checking and validation

to prevent data corruption. An ORESTES-schema is a mapping of field names to types. A

type can be primitive (String, Boolean, Integer, Float, Date, GeoPoint), a reference (ob-

ject Id), a collection (Set, Map, List), an embedded object (defined by a schema) or JSON

(Array, Object). Through the JSON types the schema grants all freedoms of schema-free

data stores. However, this lack of structure is usually unnecessary as schemas can be

asynchronously evolved. Every ORESTES server holds all schemas in memory and broad-

727

casts client-initiated schema changes to all other servers. There are two kinds of schema

changes: Safe Changes (adding fields, changing field types to a parent type) are commu-

tative, associative and idempotent and thus can be safely transferred asynchronously. As

safe changes are non-destructive, they can be lazily applied. Unsafe Changes (deleting

and renaming fields, changing field types to a non-parent type) have side-effects and need

to be broadcasted in a coordinated, blocking fashion using 2PC.

Access Control. To extend a DBaaS to a BaaS, user and access control are required

as clients cannot be trusted. In ORESTES this is achieved by role-based access-control

(RBAC) and default schemas for common BaaS use cases: users, groups, installations,

messages, social posts, in-app purchases etc. These BaaS schemas have special seman-

tics. For instance, a user instance automatically gets created when a user registers via

OAuth or OpenId and logins are checked against the user database object. Registra-

tion and login can thus be provided as database-independent default modules. On suc-

cessful login, an access token is generated, which uses an enhanced scheme of Fu et al.

[FSSF01]: expires = t & data = u & digest = HMACk(exp = t & data = u) where

u = id(user) & {id(role) |user ∈ role} and k = tenant id & server secret, i.e. the

token contains the user’s id and his roles and a signature (a HMAC for performance rea-

sons). Based on this token the servers check schema-level ACLs and object-level ACLs. An

ACL grants or denies access to users and roles for certain operations: read and write on

object-level and read, query, create, delete, extend schema, subclass schema on schema-

level. In contrast to schema-level ACLs, object-level ACLs need a specific data module

for mapping. In MongoDB, for instance, object level ACLs are enforced by conditioning

data operations over a per-object, indexed ACL field containing allowed and denied users

and groups. As the access token is self-contained, no shared server state is required. Even

reverse-proxy caches and CDNs can perform ACL checks for read operations if they sup-

port sufficiently expressive configuration languages (e.g. Varnish VCLs). To enable this,

a merged view of schema- and object-level ACLs is attached to objects, which are used by

these caches and stripped from objects before sending them to clients. To execute critical

business logic, server-side JSPA scripts can be registered as stored procedures, before- or

after-handlers. Before- and after-handlers are called with the operation and schema they

are defined for (e.g. to validate user input), whereas stored procedures are explicitly in-

voked over the REST API (e.g. to submit an order). Through Node.js, JSPA can likewise

be used on the client and server. REST API calls are handled via inter-process communi-

cation between the Java-based ORESTES servers and the scripts in Node.js.

Polyglot Persistence. Making use of the loose coupling provided by the unified REST

API, we introduce a Polyglot Persistence Mediator (PPM), which automatically routes

data to different backend data stores. Decision-making is based on a per-schema SLA,

which combines different functional and nonfunctional requirements. The prototype sup-

ports a decision between MongoDB and Redis with MongoDB as the default principal

storage facility. The SLA allows for simple annotations like saving an attribute in a certain

datastructure (e.g. priority queue or hash-set) for fast updates and special queries (e.g. top-

k) as well as for more refined, parameter based requirements. For instance, a hotspot-field

could be annotated with a certain maximum write latency. The persistence mediator takes

the schema annotations to make a runtime decision for the appropriate backend, based

728

on a scoring of available backends for the demanded SLA. Similarly, fields can be anno-

tated with particular boundaries on latency, availability and replication factors. Cross-data

store materialization is handled through parallel background processes in each ORESTES

server, which guarantee a strict upper time limit for each objects materialization. This new

approach enables applications to make use of polyglot persistence on a declarative basis.

Though this is ongoing work, we present some promising preliminary results in Section 3.

Consistent Caching. If read access is not restricted by ACLs, objects are returned as

publicly cachable, i.e. carrying a Cache-Control:public,max-age=ttl header,

so intermediate caches save object copies for ttl seconds. We define 4 consistency levels:

Read-Any (RA) clients may receive any previously cached version of an object; staleness

is only bounded by the expiration time ttl.

Read-Newest (RN) explicitly fetches the newest object version using an HTTP cache

revalidation request, i.e. through refreshing intermediaries.

Transactional (TA) clients read-sets and write-sets are validated and checked for stale

reads at commit time. This approach is cache-compatible and conceptually similar

to the strategy employed for optimistic transactions in Google’s F1 [SVS+13] and

the Omid system [GJK+14] and have been described for ORESTES in [GBR14].

Bloom-Filter-Bounded Staleness (BFB) By loading a Bloom filter of recent changes,

clients are guaranteed to see only object versions that are at least as recent as the

database state by the time the Bloom filter was generated.

Read-Any has the strongest latency benefit – in the best case, the object is resident in

the client cache and even a round-trip to a content delivery network (CDN) is cheap (in

the order of 20ms). Read-Newest guarantees freshness at the cost of a full round-trip to

the cloud data-center. As shown in Figure 2, web caches are transparently leveraged at

HTTP level. While client-, ISP- and forward-proxy caches cannot be invalidated by the

server, CDNs and reverse-proxies support explicit invalidations. ORESTES uses a plug-in

mechanism to propagate updates in their respective purging protocols. SLAs provided by

CDNs differ significantly, for instance Amazon Cloudfront rate-limits total invalidations

and takes more than 10 minutes to apply them, whereas other CDNs (e.g. Fastly) grant

arbitrary invalidation frequencies and instant application. This has to be taken into account

when coupling the REST API to a CDN as it strongly effects cache-hit ratios and staleness.

BFB solves the following fundamental problem: if objects are cached for a predefined du-

ration ttl, ad-hoc changes will result in stale cache reads. BFB introduces the new idea

of transferring the cache invalidation task from the server to the client. To achieve this, the

server tracks all objects that have been updated in the last ttl second in a shared Counting

Bloom Filter. It represents the set S of potentially stale objects oi, i.e. all objects whose

logical write timestamp WTS(oi) lies less than ttl seconds in the past and is not equal to

their creation timestamp CTS(oi): S = {oi ∈ db|now()− ttl > UTS(oi)∧WTS(oi) �=
CTS(oi)}. Upon connection, the flat Bloom filter is piggybacked to the client. Before

retrieving an object over the REST API, the client performs an O(1) hash-lookup in the

Bloom filter to decide whether the object should be fetched normally, i.e. allowing cache-

hits or if a HTTP revalidation should be attached to the request, i.e. letting caches validate

the freshness by the server through an If-None-Match:version-number condi-

tion. The benefit of this scheme is that any HTTP-compliant cache is implicitly used by

729

the unified REST API, yielding the largest conceivable geo-replication system without any

up-front deployment and with a strong guarantee – the age of the Bloom filter is a strict

lower time bound for staleness.

The Bloom filter is very efficient for representing the objects in S, since due to its proba-

bilistic nature it is very small. A Bloom filter with m bits using k hash functions to store

n distinct objects, has a false-positive rate f ≈ (1− exp(−kn/m))k. This allows to trade

off false-positives (revalidations instead of cached reads) against size, i.e. the overhead of

fetching the Bloom filter. For instance, with f = 0.01, each object requires 9.6 bits. So if

1000 individual objects were changed in the last ttl seconds, only 1.17 KB would need

to be transferred. At the server-side, a Counting Bloom filter is employed to support object

removal. As every update operation leads to an addition in the filter, it has to support high

update rates as well as fast retrieval of the flat Bloom filter. As shown in Figure 2, this

is achieved by storing the Counting Bloom filter as an in-memory bit vector (in Redis)

using a scheme where each bit-position bi is represented by a materialized Bloom filter

bit and the respective counter: bi = (count > 0, count). The materialized bits are stored

contiguously, i.e. to fetch the whole Bloom filter it can be directly read from main mem-

ory. To remove objects from the filter that have not changed in the last ttl seconds, each

server maintains a priority queue of objects inserted into the filter. As time advances the

top elements from priority queue are successively evicted from the filter. The Counting

Bloom filter can also be employed to estimate the update frequency of objects to com-

pute their optimal ttl value. The enabling technique, known as spectral Bloom filters,

performs cardinality estimation of an object using its counter values [BM02]. This esti-

mation divided by the current ttl yields the update frequency. Our open-source Bloom

filter framework, including a detailed statistical and performance analysis, can be found

online2. Bloom filter-bounded staleness is ongoing work. We are currently working on a

sharded Counting Bloom filter as a Commutative Replicated Data-Type (CRDT) to also

serve it in a highly available eventually consistent manner, as well as statistical framework

for the optimal choice of Bloom filter parameters and caching durations.

3 Evaluation

We conducted several experiments to evaluate the performance implications of the REST/

HTTP layer and the effects of caching. Figure 4a shows the results of a setup where 50

client VMs using a forward-proxy cache and ORESTES with VOD are separated by a net-

work latency of 165ms ± 2ms using the Amazon EC2 regions Ireland and California.

The clients concurrently execute a microbenchmark modeled after a social networking

scenario (500 operations, read/write ratio 90%/10%, navigational access with sporadic

queries). There are three consecutive runs for different sizes of the database compar-

ing ORESTES exposing VOD against the native binary VOD protocol. The graph shows

that the average execution time is heavily reduced with ORESTES as a consequence of its

caching approach. Figure 4b reports the results of the same microbenchmark for a setup

of hardware machines using a single client, different caches (both in Hamburg) access-

2github.com/DivineTraube/Orestes-Bloomfilter

730

ing ORESTES/VOD (California). The results show that the large performance advantage

is consistent across different web caches. This is a consequence of ORESTES relying on

standard HTTP caching. Please note that both experiments only consider forward-proxy

caching. In our current work, we are tackling the problem of also considering client caches,

CDNs and reverse-proxies, which are likely to yield even more drastic results.

50 100 150 200 250

300 / 1

300 / 2

300 / 3

3000 / 1

3000 / 2

3000 / 3

30000 / 1

30000 / 2

30000 / 3

Time [s]
VOD native

Orestes

Se
tu

p
[#

ob
je

ct
s/

ru
n]

(a) Read-heavy cloud scenario.

50

100

150

1 2 3

Ti
m

e
[s

]

Run
Squid 2 Squid 3 Squid 3 patched

Microsoft TMG No cache VOD

(b) Behaviour of different web caches.

0
200
400
600
800

1000
1200
1400
1600
1800

7500 10000 12500 15000

Av
er

ag
e

la
te

nc
y

in
 m

s

Desired throughput in OPS

Orestes with PPM Orestes without PPM Varnish

(c) Cloud-based PPM Evaluation.

0

500

1000

1500

12500 15000 17500 20000

Av
er

ag
e

la
te

nc
y

in
 m

s

Desired throughput in OPS

Orestes with PPM Orestes without PPM Varnish

(d) Effects of increased DB performance.

Figure 4: Evaluation of ORESTES, its caching behaviour and the PPM.

We also report preliminary results for the Polylgot Persistence Mediator. The evaluation

considers a web site/app displaying top-k elements based on a counting metric in content

objects (e.g. impressions for a news article). The schema SLA specifies that counter

increases and top-k queries should both be performed with small latency. The PPM in

ORESTES, which is backed by MongoDB and Redis, routes counter increases to a Redis

sorted set mapping counters to object ids. The PPM materializes counters from Redis to

MongoDB in 1 minute intervals so they can also be accessed through MongoDB-queries

(for other queries than top-k). The experiment shown in Figure 4c is performed on Amazon

EC2 using a c3.4xlarge instance for both the client and ORESTES server and a weaker

m1.large instance for each Redis and MongoDB. MongoDB is attached to an EBS storage

volume with 1000 provisioned IOPS and is accessed using the acknowledged write

concern that does not guarantee persistence. Figure 4c shows the throughput of performing

731

100k counter updates comparing ORESTES with PPM to ORESTES with MongoDB. This

is compared to the HTTP performance ”gold standard” by replacing the ORESTES server

by a Varnish reverse-proxy serving a static response from memory. The graph shows that

the PPM is able to handle much higher throughput with lower latency by using the SLA to

route counter updates to Redis. It is also evident that the overhead of the ORESTES layer

is very low – despite additional database communication latency remains comparable to

Varnish up to 2/3 of the maximum throughput. Figure 4d shows a consistent result when

instance sizes of the database machines are increased to c3.4xlarge.

HTTP enhancements. Though HTTP is widely used for cloud data management, it has

restrictions. The evolving HTTP/2.0 standard will address some performance problems

of HTTP/1.1 through multiplexing, binary encoding, header compression and server push.

However, it leaves HTTP semantics unchanged. We propose two semantic improvements

to HTTP for REST-based cloud data management: variable-precision timestamps and mul-

tipart caching. Timestamp-based versioning schemes of underlying databases cannot be

exposed as HTTP timestamps – their precision is limited to seconds. This lack of pre-

cision forces REST APIs to expose database timestamps as opaque ETags. The cost is

that ordering semantics are lost and HTTP conditional requests (e.g. If-Modififed-Since)

are not possible. In recent NoSQL databases timestamp-based versioning is common, for

instance MongoDB’s ids are prefixed with a 32-bit timestamp, HBase uses ms-timestamps

for cell-level-versioning and Cassandra generates µs-timestamps for its last-write-wins

concurrency. Therefore we suggest to extend the HTTP-date type defined in RFC 2616

[FGM+99] to also allow UTC timestamps (ISO 8601) that support arbitrary second frac-

tions: HTTP-date = rfc1123-date | rfc850-date | asctime-date |

ISO-8601-date. A second suggested improvement is multipart caching. Multipart

messages (RFC 1341) are used in HTTP to send a collection of resources in bulk (e.g.

query result sets). However, these resources do not carry individual metadata, only encod-

ing information. We propose a multipart/resources type allowing Cache-Control

headers as well as canonical URIs. This eliminates additional round-trips and makes GET

request profit from previous bulk replies.

Networking improvements. We also found that cache-aware REST APIs for cloud data-

bases lead to two problems: falsely non-persistent HTTP methods and temporary TCP

deadlocks. We encountered non-persistent methods in the Squid proxy cache which is

arguably the best-researched web cache [Nag04] and heavily used by large-scale web sites

such as Wikipedia and Flickr. In Squid, persistent TCP connections [FGM+99] were

handled incorrectly as depicted in Figure 5, where the server connection is terminated

after just one request. This misbehavior was caused by falsely treating requests containing

a body as non-idempotent, instead of only POST requests. Since the default rule for non-

idempotent messages was to open a new connection as a precaution, this caused at least

one costly additional round-trip (TCP handshake) for POST/PUT/DELETE requests. We

reported and corrected this issue which lead to significant performance improvements. A

second issue with an even higher performance impact is still present in all current versions

of Squid, Microsoft TMG and possibly other caches: a temporary TCP deadlock of 200-

500ms (depending on the OS). It is caused by an interference of the Nagle algorithm and

the delayed ACK algorithm which are defined in the TCP protocol standard to increase

732

Client Squid Server

PUT http://.. HTTP/1.1

Connection: keep-alive

PUT /db/.. HTTP/1.1

Connection: keep-alive

204 No Content HTTP/1.1

Connection: keep-alive

204 No Content HTTP/1.1

Connection: keep-alive

Via: ...(squid/3.1.11)

3-WAY-HANDSHAKE

HTTP-DATA

ACK

HTTP-DATA

ACK

3-WAY-HANDSHAKE

HTTP-DATA

ACK + HTTP-DATA

FIN ACK

AAAAAAAAAAAAAAAAAAATATATAAAAATATAAAAATAAATTAAAATTAAATTAAATTTTAATTTTATAAATTAAAAATTTAAAATTTTAAA
P

o
r
t
 3

1
2

8

P
o

r
t
 x

x
x
x

P
o

r
t
 x

x
x
x

P
o

r
t
 8

0

HTTP method falsely
non-persistent in Squid

1 2

34

Figure 5: Non-persistent HTTP methods.

Squid ȀMicrosoft TMGServer HTTP-RESPONSE Client
1. TCP-SEGMENT: HTTP-HEADER

2. TCP-SEGMENT: HTTP-BODY

Time

1 ENNTT

2

3

1 2 3

200ms ± 5ms

Figure 6: Temporary TCP deadlock.

the effectiveness of TCP buffer management. Figure 6 illustrates the problem: (1) When

the server returns the HTTP response, the web cache processes the HTTP header and

body and passes them to the system’s socket interface for forwarding in two consecutive

steps. In modern operating systems, the Nagle algorithm is enabled by default and follows

the intuition of buffering data until new ACKs arrive or a complete TCP segment can be

filled. (2) As there is no outstanding ACK from the client, the HTTP header will be sent

immediately. The client receives the first packet but does not instantly acknowledge it,

as its socket’s delayed ACK algorithm tries to send ACKs piggybacked with data or for

every second full-sized segment it receives. (3) As HTTP is a request/response protocol,

the client has no data to send, so the ACK is delayed until a timeout of 200ms (depending

on the OS) occurs. The web cache’s Nagle algorithm then detects the incoming ACK and

sends the queued HTTP body segment. Affected systems (e.g. Squid and TMG) should

amend the problem by buffering data in the application or turning off the Nagle algorithm.

The temporary deadlock is detrimental to the performance of REST APIs, in particular

for latency-sensitive cloud database workloads. Until the problem is addressed in the TCP

specification, we suggest a temporary solution: small HTTP messages can be filled with

whitespace characters to reach the full segment size that triggers immediate propagation.

4 Related Work

REST APIs for DBaaS systems have been tackled from different directions. Google’s

GData and Microsoft’s OData are two approaches for a standard HTTP CRUD API that

are used by some of their respective cloud services. Many commercial DBaaS systems

offer custom REST APIs tailored for one particular database (e.g. DynamoDB, Cloudant).

A first theoretic attempt for a unified DBaaS REST API has been made by Haselman et al.

[HTV10] for RDBMSs. Unlike the ORESTES REST API, these approaches cannot make

use of caching and do not offer a scalable middleware for exposing arbitrary aggregate-

oriented data stores, nor can they be used in a BaaS setting. Two older approaches for

reducing database access latency are DBCache and DBProxy [APTP03]. Both require a

full-fledged RDBMS as a proxy. Bloom filters are widely used for content summaries

[BM02] (e.g. in Summary Cache [Nag04]). To our best knowledge, though, they have

733

never applied to client-driven cache consistency. A different approach to low latency is

geo-replication which can be either synchronous (e.g. in MDCC, Spanner, MegaStore

[SVS+13]) or asynchronous (e.g. BigTable/HBase, Cassandra, Riak). Unlike the web

caching approach, this requires database-specific protocols and deployments.

5 Conclusions

In this paper, we present a unified modular REST API that can expose aggregate-oriented

data stores as a Database- and Backend-as-a-Service. The ORESTES middleware pro-

vides the REST API in a scalable, extensible fashion allowing data stores to easily plug-in

and reuse common functionality like schema management, authentication, access control,

caching and transactions. To solve the latency problem of the modern web, we proposed

the BFB cache consistency scheme that offloads revalidations to clients using an efficiently

managed Bloom filter representing a sliding window of recently changed objects. We also

present the first steps towards a Polyglot Persistence Mediator that routes data to differ-

ent storage backends based on declarative SLAs. The evaluation shows that the unified

REST/HTTP API achieves high throughput and very low latency.

References

[APTP03] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data cache
for Web applications. In Proceedings of the ICDE, page 821–831, 2003.

[BM02] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. In
Internet Math., 2002.

[CJP+11] Carlo Curino, Evan PC Jones, Raluca Ada Popa, Nirmesh Malviya, et al. Relational
cloud: A database-as-a-service for the cloud. In Proc. of CIDR, 2011.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and other. RFC 2616. 1999.

[FSSF01] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. The Dos and Don’ts of Client
Authentication on the Web. In USENIX Security Symposium, page 251–268, 2001.

[GBR14] Felix Gessert, Florian Bücklers, and Norbert Ritter. ORESTES: a Scalable Database-
as-a-Service Architecture for Low Latency. In CloudDB, 2014.

[GJK+14] Ferro Daniel Gómez, Flavio Junqueira, Ivan Kelly, Benjamin Reed, et al. Omid: Lock-
free Transactional Support for Distributed Data Stores. In ICDE, 2014.

[Gri13] Ilya Grigorik. High performance browser networking. O’Reilly Media, 2013.

[HTV10] T. Haselmann, G. Thies, and G. Vossen. Looking into a REST-Based Universal API for
Database-as-a-Service Systems. In CEC, page 17–24, 2010.

[Nag04] S. V. Nagaraj. Web caching and its applications, volume 772. Springer, 2004.

[SF12] Pramod J. Sadalage and Martin Fowler. NoSQL distilled. Pearson Education, 2012.

[SVS+13] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, et al. F1: A distributed SQL
database that scales. Proceedings of the VLDB Endowment, 6(11):1068–1079, 2013.

734

